Title | Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling. |
Publication Type | Journal Article |
Year of Publication | 2025 |
Authors | Cheng APellan, Widman AJ, Arora A, Rusinek I, Sossin A, Rajagopalan S, Midler N, Hooper WF, Murray RM, Halmos D, Langanay T, Chu H, Inghirami G, Potenski C, Germer S, Marton M, Manaa D, Helland A, Furatero R, McClintock J, Winterkorn L, Steinsnyder Z, Wang Y, Alimohamed AI, Malbari MS, Saxena A, Callahan MK, Frederick DT, Spain L, Sigouros M, Manohar J, King A, Wilkes D, Otilano J, Elemento O, Mosquera JMiguel, Jaimovich A, Lipson D, Turajlic S, Zody MC, Altorki NK, Wolchok JD, Postow MA, Robine N, Faltas BM, Boland G, Landau DA |
Journal | Nat Methods |
Date Published | 2025 Apr 11 |
ISSN | 1548-7105 |
Abstract | Differentiating sequencing errors from true variants is a central genomics challenge, calling for error suppression strategies that balance costs and sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing for cancer monitoring is limited by sparsity of circulating tumor DNA, abundance of genomic material in samples and preanalytical error rates. Whole-genome sequencing (WGS) can overcome the low abundance of ccfDNA by integrating signals across the mutation landscape, but higher costs limit its wide adoption. Here, we applied deep (~120×) lower-cost WGS (Ultima Genomics) for tumor-informed circulating tumor DNA detection within the part-per-million range. We further leveraged lower-cost sequencing by developing duplex error-corrected WGS of ccfDNA, achieving 7.7 × 10-7 error rates, allowing us to assess disease burden in individuals with melanoma and urothelial cancer without matched tumor sequencing. This error-corrected WGS approach will have broad applicability across genomics, allowing for accurate calling of low-abundance variants at efficient cost and enabling deeper mapping of somatic mosaicism as an emerging central aspect of aging and disease. |
DOI | 10.1038/s41592-025-02648-9 |
Alternate Journal | Nat Methods |
PubMed ID | 40217113 |
PubMed Central ID | 6080308 |
Grant List | R01-CA266619-01 / / U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) / P30 CA08748 / / U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) / A29911, FC10988 / / Cancer Research UK (CRUK) / FC10988 / / Wellcome Trust (Wellcome) / |