Title | Global evolution of the tumor microenvironment associated with progression from preinvasive invasive to invasive human lung adenocarcinoma. |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Altorki NK, Borczuk AC, Harrison S, Groner LK, Bhinder B, Mittal V, Elemento O, McGraw TE |
Journal | Cell Rep |
Volume | 39 |
Issue | 1 |
Pagination | 110639 |
Date Published | 2022 Apr 05 |
ISSN | 2211-1247 |
Keywords | Adenocarcinoma, Adenocarcinoma of Lung, Humans, Lung Neoplasms, Neoplasm Invasiveness, Retrospective Studies, Tumor Microenvironment |
Abstract | To investigate changes in the tumor microenvironment (TME) during lung cancer progression, we interrogate tumors from two chest computed tomography (CT)-defined groups. Pure non-solid (pNS) CT density nodules contain preinvasive/minimally invasive cancers, and solid density nodules contain invasive cancers. Profiling data reveal a dynamic interaction between the tumor and its TME throughout progression. Alterations in genes regulating the extracellular matrix and genes regulating fibroblasts are central at the preinvasive state. T cell-mediated immune suppression is initiated in preinvasive nodules and sustained with rising intensity through progression to invasive tumors. Reduced T cell infiltration of the cancer cell nests is more frequently associated with preinvasive cancers, possibly until tumor evolution leads to a durable, viable invasive phenotype accompanied by more varied and robust immune suppression. Upregulation of immune checkpoints occurs only in the invasive nodules. Throughout progression, an effector immune response is present but is effectively thwarted by the immune-suppressive elements. |
DOI | 10.1016/j.celrep.2022.110639 |
Alternate Journal | Cell Rep |
PubMed ID | 35385730 |
PubMed Central ID | PMC9033258 |
Grant List | R01 CA194547 / CA / NCI NIH HHS / United States UG3 CA244697 / CA / NCI NIH HHS / United States UH3 CA244697 / CA / NCI NIH HHS / United States |